If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+8t+7=0
a = -16; b = 8; c = +7;
Δ = b2-4ac
Δ = 82-4·(-16)·7
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-16\sqrt{2}}{2*-16}=\frac{-8-16\sqrt{2}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+16\sqrt{2}}{2*-16}=\frac{-8+16\sqrt{2}}{-32} $
| 4(t-6)=3(t+2) | | 2x+52=106 | | 2x-44=98 | | 2×(x11)=18 | | 2x+.8=10.2 | | 8x+9=15x+9 | | (2x-1)+(2×+1)+(2×-1)=0 | | 8(x+9)=5+8x | | 5x-2x=19 | | 0.4y+4=−1 | | 3x/4+2x/3=4 | | (-2/3+2/3)+x=0 | | 3g^2-24g+27=0 | | F(x)=|5-x| | | 5x-10-3x-12=20 | | -3(1-3)=2(b+1) | | (9+u)(4u-6)=0 | | -3(1-3)=2(b=1) | | 7.8b-2.14=-42.14 | | 2x•x-2=48 | | 5(g-3)+2=(g+1) | | 2x.4x=10 | | 2+5.3k=18.63 | | 5(g-3)+2+3(g=1) | | 3x-4-1x=-4x-(-3+x) | | 6t^2+8t+8=0 | | 4x+11-6x=18-17x+15x-7 | | 5/6*6/5z=4/7*5/6 | | 3w−5=7 | | 3(s-2)+1=4+2s | | 343=49^x | | k+10=-3k+2k |